有很多的同學是非常想知道,高中數學重點公式有哪些,小編整理瞭相關信息,希望會對大傢有所幫助!
高中數學重點公式有哪些
乘法與因式分
a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標準方程(x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標準方程y2=2px y2=-2px x2=2py x2=-2py
直棱柱側面積S=c*h 斜棱柱側面積 S=c'*h
正棱錐側面積S=1/2c*h' 正棱臺側面積 S=1/2(c+c')h'
圓臺側面積S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜棱柱體積V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式V=s*h 圓柱體 V=pi*r2h
提高數學成績的方法
學好數學第一要養成預習的習慣。這是我多年學習數學的一個好方法,因為提前把老師要講的知識先學一遍,就知道自己哪裡不會,學的時候就有重點。當然,如果完全自學就懂更好瞭。
第二是書後做練習題。預習完不是目的,有時間可以把例題和課後練習題做瞭,檢查預習情況,如果都會做說明學會瞭,即使不會還能再聽老師講一遍。
第三個步驟是做老師佈置的作業,認真做。做的時候可以把解題過程直接寫在題目旁邊,比如選擇題和填空題,因為解答題有很多空白處可寫。這樣做的好處就是,老師講題時能跟上思路,不容易走神。
第四個學好數學的方法是整理錯題。每次考試結束後,總會有很多錯題,對於這些題目,我們不要以為上課聽懂瞭就會做瞭,看花容易繡花難,親手做過瞭才知道會不會。而且要把錯的題目對照書本去看,重新學習知識。
第五個提高數學成績的方法是查缺補漏。在做瞭大量習題以後,數學成績有所提高,但還是存在一些不會做的題目,我們要善於發現哪些類型的題目還存在盲區,然後逐一擊破。
學好數學的竅門有哪些
首先是預習。在課前把老師即將教授的單元內容瀏覽一次,並留意不瞭解的部分。
其次是專心聽講。新的課程開始有很多新的名詞定義或新的觀念想法,老師的說明講解絕對比同學們自己看書更清楚,務必用心聽,切勿自作聰明而自誤。
上課時一面聽講就要一面把重點背下來。定義、定理、公式等重點,上課時就要用心記憶,如此,當老師舉例時才聽得懂老師要闡述的要義。待回傢後隻需花很短的時間,便能將今日所教的課程復習完畢。
第三是課後練習要會整理重點難點。有數學課的當天晚上,要把當天教的內容整理完畢,定義、定理、公式該背的一定要背熟,有些同學以為數學著重推理,不必死背,所以什麼都不背,這觀念並不正確。
一般所謂不死背,指的是不死背解法,但是基本的定義、定理、公式是我們解題的工具,沒有記住這些,解題時將不能活用他們。很多同學數學考不好,就是沒有把定義認識清楚,也沒有把一些重要定理、公式完整地背熟。