有很多的文科同學數學成績是非常的不好的,其實要想學好數學最主要就是把公式記住,小編整理瞭高考文科數學必背公式僅供參考!
函數、導數
1、函數的單調性
(1)設x1、x2[a,b],x1x2那麼
f(x1)f(x2)0f(x)在[a,b]上是增函數;
f(x1)f(x2)0f(x)在[a,b]上是減函數.
(2)設函數yf(x)在某個區間內可導,若f(x)0,則f(x)為增函數;若f(x)0,則f(x)為減函數.
2、函數的奇偶性
對於定義域內任意的x,都有f(-x)=f(x),則f(x)是偶函數; 對於定義域內任意的x,都有f(x)f(x),則f(x)是奇函數。 奇函數的圖象關於原點對稱,偶函數的圖象關於y軸對稱。
解三角形公式:
正弦定理:a/sinA=b/sinB=c/sinC=2R R為三角形外接圓的半徑
餘弦定理:a2=b2+c2-2bc*cosA
sin(A+B)=sinC
sin(A+B)=sinAcosB+sinBcosA
sin(A-B)=sinAcosB+sinBcosA
sin2A=2sinAcosA
cos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2
tan2A=2tanA/[1-(tanA)2]
(sinA)2+(cosA)2=1
常用的誘導公式有以下幾組:
公式一:設α為任意角,終邊相同的角的同一三角函數的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)
公式二:設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα
公式三:任意角α與-α的三角函數值之間的關系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα
公式六:π/2±α及3π/2±α與α的三角函數值之間的關系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinα
怎麼才能讓數學成績快速提高?
1.審題與解題的關系
對審題重視不夠,匆匆一看急於下筆,以致題目的條件與要求都沒有吃透,至於如何從題目中挖掘隱含條件、啟發解題思路就更無從談起,這樣解題出錯自然多。隻有耐心仔細地審題,準確地把握題目中的關鍵詞與量(如"至少","a>0",自變量的取值范圍等等),從中獲取盡可能多的信息,才能迅速找準解題方向。
2."會做"與"得分"的關系
要將你的解題策略轉化為得分點,主要靠準確完整的數學語言表述,這一點往往被一些考生所忽視,因此卷面上大量出現"會而不對""對而不全"的情況,考生自己的估分與實際得分差之甚遠。如立體幾何論證中的"跳步",使很多人丟失1/3以上得分,代數論證中"以圖代證",盡管解題思路正確甚至很巧妙,但是由於不善於把"圖形語言"準確地轉譯為"文字語言",得分少得可憐;再如去年理17題三角函數圖像變換,許多考生"心中有數"卻說不清楚,扣分者也不在少數。隻有重視解題過程的語言表述,"會做"的題才能"得分"。
3.快與準的關系
在目前題量大、時間緊的情況下,"準"字則尤為重要。隻有"準"才能得分,隻有"準"你才可不必考慮再花時間檢查,而"快"是平時訓練的結果,不是考場上所能解決的問題,一味求快,隻會落得錯誤百出。如去年第21題應用題,此題列出分段函數解析式並不難,但是相當多的考生在匆忙中把二次函數甚至一次函數都算錯,盡管後繼部分解題思路正確又花時間去算,也幾乎得不到分,這與考生的實際水平是不相符的。適當地慢一點、準一點,可得多一點分;相反,快一點,錯一片,花瞭時間還得不到分。
小編推薦:高考文科數學130分答題技巧總結
如何有效的提高文科數學成績
一、課內重視聽講,課後及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除瞭自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。