三角函數是基本初等函數之一,是以角度(數學上最常用弧度制,下同)為自變量,角度對應任意角終邊與單位圓交點坐標或其比值為因變量的函數。下面是小編整理的高中數學三角函數公式,一起來看看吧!
高中數學三角函數公式
公式一 | 公式二 |
sin(2kπ+α)=sin αcos(2kπ+α)=cos αtan(2kπ+α)=tan αcot(2kπ+α)=cot αsec(2kπ+α)=sec αcsc(2kπ+α)=csc α | sin(π+α)=-sin αcos(π+α)=-cos αtan(π+α)=tan αcot(π+α)=cot αsec(π+α)=-sec αcsc(π+α)=-csc α |
公式三 | 公式四 |
sin(-α)=-sin αcos(-α)=cos αtan(-α)=-tan αcot(-α)=-cot αsec(-α)=sec αcsc(-α)=-csc α | sin(π-α)=sin αcos(π-α)=-cos αtan(π-α)=-tan αcot(π-α)=-cot αsec(π-α)=-sec αcsc(π-α)=csc α |
公式五 | 公式六 |
sin(α-π)=-sin αcos(α-π)=-cos αtan(α-π)=tan αcot(α-π)=cot αsec(α-π)=-sec αcsc(α-π)=-csc α | sin(2π-α)=-sin αcos(2π-α)=cos αtan(2π-α)=-tan αcot(2π-α)=-cot αsec(2π-α)=sec αcsc(2π-α)=-csc α |
公式七 | 公式八 |
sin(π/2+α)=cosαcos(π/2+α)=−sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsec(π/2+α)=-cscαcsc(π/2+α)=secα | sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsec(π/2-α)=cscαcsc(π/2-α)=secα |
公式九 | 公式十 |
sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsec(3π/2+α)=cscαcsc(3π/2+α)=-secα | sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsec(3π/2-α)=-cscαcsc(3π/2-α)=-secα |
高中數學三角函數推導方法
定名法則
90°的奇數倍+α的三角函數,其絕對值與α三角函數的絕對值互為餘函數。90°的偶數倍+α的三角函數與α的三角函數絕對值相同。也就是“奇餘偶同,奇變偶不變”。
定號法則
將α看做銳角(註意是“看做”),按所得的角的象限,取三角函數的符號。也就是“象限定號,符號看象限”(或為“奇變偶不變,符號看象限”)。
在Kπ/2中如果K為偶數時函數名不變,若為奇數時函數名變為相反的函數名。正負號看原函數中α所在象限的正負號。關於正負號有個口訣;一全正,二正弦,三兩切,四餘弦,即第一象限全部為正,第二象限角,正弦為正,第三象限,正切和餘切為正,第四象限,餘弦為正。或簡寫為“ASTC”,即“all”“sin”“tan+cot”“cos”依次為正。還可簡記為:sin上cos右tan/cot對角,即sin的正值都在x軸上方,cos的正值都在y軸右方,tan/cot的正值斜著。
比如:90°+α。定名:90°是90°的奇數倍,所以應取餘函數;定號:將α看做銳角,那麼90°+α是第二象限角,第二象限角的正弦為正,餘弦為負。所以sin(90°+α)=cosα,cos(90°+α)=-sinα這個非常神奇,屢試不爽~
還有一個口訣“縱變橫不變,符號看象限”,例如:sin(90°+α),90°的終邊在縱軸上,所以函數名變為相反的函數名,即cos,所以sin(90°+α)=cosα。