tan(正切)。Tan是正切的意思,角θ在任意直角三角形中,與θ相對應的對邊與鄰邊的比值叫做角θ的正切值。若將θ放在直角坐標系中即tanθ=y/x。tanA=對邊/鄰邊。在直角坐標系中相當於直線的斜率k。
三角函數的比
sin(正弦)是對邊比斜邊
cos(餘弦)是鄰邊比斜邊
tan(正切)是對邊比鄰邊
cot(餘切)是鄰邊比對邊
Tan常用公式
tan a=sin a/cos a
tanα=1/cotα
1、設α為任意角,終邊相同的角的同一三角函數的值相等:tan(2kπ+α)=tanα
2、設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:tan(π+α)=tanα
3、任意角α與 -α的三角函數值之間的關系: tan(-α)=-tanα
4、利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:tan(π-α)=-tanα
5、利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:tan(2π-α)=-tanα
6、π/2±α及3π/2±α與α的三角函數值之間的關系:
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(3π/2+α)=-cotα
tan(3π/2-α)=cotα(以上k∈Z)
一般的最常用公式
口訣;奇變偶不變,符號看象限 一般的最常用公式有:
Sin(A+B)=SinA*CosB+SinB*CosA Sin(A-B)=SinA*CosB-SinB*CosA Cos(A+B)=CosA*CosB-SinA*SinB Cos(A-B)=CosA*CosB+SinA*SinB
Tan(A+B)=(TanA+TanB)/(1-TanA*TanB) Tan(A-B)=(TanA-TanB)/(1+TanA*TanB) 同角三角函數的關系(即同角八式)
平方關系:
sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α)
誘導公式
tan(2kπ+α)=tan α
tan(π/2-α)=cot α
tan(π/2+α)=-cot α
tan(π+α)=tan α
tan(π-α)=-tan α
兩角和差公式
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
tan(a+b+c)=tanα+tanb+tanc-tanatanbtanc/1-tanatanb-tanctanb-tanatanc