a²=b²+c²,c²=a²-b²,c=√(a²-b²),e=c/a=√[(a²-b²)/a²]=√[1-(b/a)²] 。橢圓的離心率:離心率統一定義是動點到焦點的距離和動點到準線的距離之比。
橢圓離心率計算方法
橢圓扁平程度的一種量度,離心率定義為橢圓兩焦點間的距離和長軸長度的比值,用e表示,即e=c/a (c,半焦距;a,長半軸)
橢圓的離心率可以形象地理解為,在橢圓的長軸不變的前提下,兩個焦點離開中心的程度。
離心率=(ra-rp)/(ra+rp),ra指遠點距離,rp指近點距離。
圓的離心率=0
橢圓的離心率:e=c/a(0,1)(c,半焦距;a,半長軸(橢圓)/半實軸(雙曲線) )
拋物線的離心率:e=1
雙曲線的離心率:e=c/a(1,+∞) (c,半焦距;a,半長軸(橢圓)/半實軸(雙曲線) )
在圓錐曲線統一定義中,圓錐曲線(二次非圓曲線)的統一極坐標方程為
ρ=ep/(1-e×cosθ), 其中e表示離心率,p為焦點到準線的距離。
橢圓上任意一點到兩焦點的距離等於a±ex。
橢圓離心率范圍
e=0,圓
0<e<1,橢圓
e=1,拋物線
e>1,雙曲線
離心率統一定義是在圓錐曲線中,動點到焦點的距離和動點到準線的距離之比。既然是距離,就不會出現負數瞭。