認識二元一次方程組的概念:一些把簡單實際的問題中的數量關系,用二元一次方程組的形式來計算,學會用含有其中一個未知數的代數式表示另一個的方法,成立於一元一次方程之上。
二元一次方程公式
x=(-b±√(b²-4ac))/2a。設一個一元二次方程為:ax^2+bx+c=0,其中a不為0,因為要滿足此方程為一元二次方程所以a不能等於0。求根公式為:x=(-b±√(b²-4ac))/2a。
二元一次方程常用解法
代入消元法
①選取一個系數較簡單的二元一次方程變形,用含有一個未知數的代數式表示另一個未知數;
②將變形後的方程代入另一個方程中,消去一個未知數,得到一個一元一次方程(在代入時,要註意不能代入原方程,隻能代入另一個沒有變形的方程中,以達到消元的目的);
③解這個一元一次方程,求出未知數的值;
④將求得的未知數的值代入①中變形後的方程中,
求出另一個未知數的值;
⑤用“{”聯立兩個未知數的值,就是方程組的解;
⑥最後檢驗(代入原方程組中進行檢驗,方程是否滿足左邊=右邊).
加減消元法
①利用等式的基本性質,將原方程組中某個未知數的系數化成相等或相反數的形式;
②再利用等式的基本性質將變形後的兩個方程相加或相減,消去一個未知數,得到一個一元一次方程(一定要將方程的兩邊都乘以同一個數,切忌隻乘以一邊,然後若未知數系數相等則用減法,若未知數系數互為相反數,則用加法);
③解這個一元一次方程,求出未知數的值;
④將求得的未知數的值代入原方程組中的任何一個方程中,
求出另一個未知數的值;
⑤用“{”聯立兩個未知數的值,就是方程組的解;
⑥最後檢驗求得的結果是否正確(代入原方程組中進行檢驗,方程是否滿足左邊=右邊)。