反函數的導數是原函數導數的倒數。求y=arcsinx的導函數,反函數的導數就是原函數導數的倒數。首先,函數y=arcsinx的反函數為x=siny,所以:y‘=1/sin’y=1/cosy,因為x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。
反函數性質
(1)函數存在反函數的充要條件是,函數的定義域與值域是一一映射;
(2)一個函數與它的反函數在相應區間上單調性一致;
(3)大部分偶函數不存在反函數(當函數y=f(x), 定義域是{0} 且 f(x)=C (其中C是常數),則函數f(x)是偶函數且有反函數,其反函數的定義域是{C},值域為{0} )。奇函數不一定存在反函數,被與y軸垂直的直線截時能過2個及以上點即沒有反函數。若一個奇函數存在反函數,則它的反函數也是奇函數。
(4)一段連續的函數的單調性在對應區間內具有一致性;
(5)嚴增(減)的函數一定有嚴格增(減)的反函數;
(6)反函數是相互的且具有唯一性;
(7)定義域、值域相反對應法則互逆(三反)
原函數
已知函數f(x)是一個定義在某區間的函數,如果存在可導函數F(x),使得在該區間內的任一點都有dF(x)=f(x)dx,則在該區間內就稱函數F(x)為函數f(x)的原函數。