×

常用導數

常用導數

曉智 曉智 發表於2024-09-09 15:04:15 瀏覽27 回應0

搶沙發發表回應

常用導數有:1、y=c(c為常數)y'=0。2、y=xAn y'=nx^(n-1)。3、y=aAx y'=aAxlna,y=eAxy'=eAx。4、y=logax y'=logae/x,y=Inx y'=1/x。5、y=sinx y'=cosx。

常見的導數公式

1、y=c(c為常數)y'=0。

2、y=xAn y'=nx^(n-1)。

3、y=aAx y'=aAxlna,y=eAxy'=eAx。

4、y=logax y'=logae/x,y=Inx y'=1/x。

5、y=sinx y'=cosx。

6、y=cosx y'=-sinx。

7、y=tanx y'=1/cos^2x。

8、y=cotx y'=-1/sin A2x。

9、y=arcsinx y'=1/V1-x^2。

10、y=arccosx y'=-1/V1-x^2。

11、y=arctanx y'=1/1+x^2。

12、y=arccotx y'=-1/1+xA2。

導數是微積分中的重要基礎概念。當自變量的增量趨於零時,因變量的增量與自變量的增量之商的極限。一個函數存在導數時,稱這個函數可導或者可微分。可導的函數一定連續。不連續的函數一定不可導。導數實質上就是一個求極限的過程,導數的四則運算法則來源於極限的四則運算法則。

可以利用導數的性質對上述式子進行證明,導數即為函數在某點的切線的斜率,即為在該點附近函數值得增量與自變量的增量之比(當自變量增量趨近於0時)。

導數的性質

奇函數求導不一定是偶函數,例如:令f(x)=x^2,(x0),f(x)在原點沒有定義,同時不是偶函數。但f'(x)=2x(x不等於0)是奇函數。

求導是數學計算中的一個計算方法,它的定義就是,當自變量的增量趨於零時,因變量的增量與自變量的增量之商的極限。在一個函數存在導數時,稱這個函數可導或者可微分。可導的函數一定連續。不連續的函數一定不可導。求導是微積分的基礎。

同時也是微積分計算的一個重要的支柱。物理學、幾何學、經濟學等學科中的一些重要概念都可以用導數來表示。如導數可以表示運動物體的瞬時速度和加速度、可以表示曲線在一點的斜率、還可以表示經濟學中的邊際和彈性。

群賢畢至

訪客