復數z=a+bi(a、b∈R)與有序實數對(a,b)是一一對應關系。復數的幾何意義,是指復數z=a+bi(a、b∈R),一一對應復平面內的點Z(a,b)。其中,在復平面內,復數的實部(a)是其對應點的橫坐標,復數的虛部(b)是其對應點的縱坐標。
復數的定義
復數是形如a+bi的數。式中a,b為實數,i是一個滿足i=-1的數,因為任何實數的平方不等於-1,所以i不是實數,而是實數以外的新的數。在復數a+bi中,a稱為復數的實部,b稱為復數的虛部,i稱為虛數單位。
當虛部等於零時,這個復數就是實數;當虛部不等於零時,這個復數稱為虛數,虛數的實部如果等於零,則稱為純虛數。由上可知,復數集包含瞭實數集,因而是實數集的擴張。復數常用形式z=a+bi叫做代數式。
我們把形如z=a+bi(a、b均為實數)的數稱為復數。其中,a稱為實部,b稱為虛部,i稱為虛數單位。當z的虛部b=0時,則z為實數;當z的虛部b≠0時,實部a=0時,常稱z為純虛數。
復數域是實數域的代數閉包,即任何復系數多項式在復數域中總有根。復數是由意大利米蘭學者卡當在16世紀首次引入,經過達朗貝爾、棣莫弗、歐拉、高斯等人的工作,此概念逐漸為數學傢所接受。
復數的四則運算公式
復數運算法則有:加減法、乘除法。兩個復數的和依然是復數,它的實部是原來兩個復數實部的和,它的虛部是原來兩個虛部的和。復數的加法滿足交換律和結合律。此外,復數作為冪和對數的底數、指數、真數時,其運算規則可由歐拉公式e^iθ=cos θ+i sin θ(弧度制)推導而得。
加法法則:
復數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個復數,則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。
兩個復數的和依然是復數,它的實部是原來兩個復數實部的和,它的虛部是原來兩個虛部的和。復數的加法滿足交換律和結合律,即對任意復數z1,z2,z3,有: z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。
減法法則:
復數的減法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個復數,則它們的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。兩個復數的差依然是復數,它的實部是原來兩個復數實部的差,它的虛部是原來兩個虛部的差。
乘法法則:
規定復數的乘法按照以下的法則進行:設z1=a+bi,z2=c+di(a、b、c、d∈R)是任意兩個復數,那麼它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
其實就是把兩個復數相乘,類似兩個多項式相乘,展開得: ac+adi+bci+bdi2,因為i2=-1,所以結果是(ac-bd)+(bc+ad)i 。兩個復數的積仍然是一個復數。
在極坐標下,復數可用模長r與幅角θ表示為(r,θ)。對於復數a+bi,r=√(a²+b²),θ=arctan(b/a)。此時,復數相乘表現為幅角相加,模長相乘。
除法法則:
復數除法定義:滿足(c+di)(x+yi)=(a+bi)的復數x+yi(x,y∈R)叫復數a+bi除以復數c+di的商。運算方法:可以把除法換算成乘法做,在分子分母同時乘上分母的共軛。所謂共軛你可以理解為加減號的變換,互為共軛的兩個復數相乘是個實常數。