×

高三數學必備知識點歸納

高三數學必備知識點歸納,有哪些必考知識點

曉智 曉智 發表於2024-09-09 15:04:28 瀏覽22 回應0

搶沙發發表回應

如果等到把課堂內容遺忘得差不多時才復習,就幾乎等於重新學習,所以課堂學習的新知識必須及時復習。一般按照教師板書的提綱和要領進行,也可以按教材綱目結構進行,從課題到重點內容,再到例題的每部分的細節,循序漸進地進行復習。

高三數學知識點歸納整理

復數的概念:

形如a+bi(a,b∈R)的數叫復數,其中i叫做虛數單位。全體復數所成的集合叫做復數集,用字母C表示。

復數的表示:

復數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數的代數形式,其中a叫復數的實部,b叫復數的虛部。

復數的幾何意義:

(1)復平面、實軸、虛軸:

點Z的橫坐標是a,縱坐標是b,復數z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立瞭直角坐標系來表示復數的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數

(2)復數的幾何意義:復數集C和復平面內所有的點所成的集合是一一對應關系,即

這是因為,每一個復數有復平面內惟一的一個點和它對應;反過來,復平面內的每一個點,有惟一的一個復數和它對應。

這就是復數的一種幾何意義,也就是復數的另一種表示方法,即幾何表示方法。

復數的模:

復數z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數的模,記為|Z|,即|Z|=

虛數單位i:

(1)它的平方等於-1,即i2=-1;

(2)實數可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立

(3)i與-1的關系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。

(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

復數模的性質:

復數與實數、虛數、純虛數及0的關系:

對於復數a+bi(a、b∈R),當且僅當b=0時,復數a+bi(a、b∈R)是實數a;當b≠0時,復數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數;當且僅當a=b=0時,z就是實數0。

高三必考知識點有哪些

1.不等式的定義

在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數學符號連接兩個數或代數式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.

2.比較兩個實數的大小

兩個實數的大小是用實數的運算性質來定義的,

有a-b>0?;a-b=0?;a-b<0?.

另外,若b>0,則有>1?;=1?;<1?.

概括為:作差法,作商法,中間量法等.

3.不等式的性質

(1)對稱性:a>b?;

(2)傳遞性:a>b,b>c?;

(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

(5)可乘方:a>b>0?(n∈N,n≥2);

(6)可開方:a>b>0?(n∈N,n≥2).

復習指導

1.“一個技巧”作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.

2.“一種方法”待定系數法:求代數式的范圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最後利用不等式的性質求出目標式的范圍.

3.“兩條常用性質”

(1)倒數性質:①a>b,ab>0?<;②a<0

③a>b>0,0;④0

(2)若a>b>0,m>0,則

①真分數的性質:<;>(b-m>0);

群賢畢至

訪客