相似三角形是指三個角分別相等,三邊成比例的兩個三角形。下面是相似三角形的判定定理,一起來看!
相似三角形的判定定理
1.如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那麼這兩個三角形相似。(簡敘為:兩角對應相等,兩個三角形相似。)(AA)
2.如果兩個三角形的兩組對應邊成比例,並且對應的夾角相等,那麼這兩個三角形相似。(簡敘為:兩邊對應成比例且夾角相等,兩個三角形相似。)(SAS)
3.如果兩個三角形的三組對應邊成比例,那麼這兩個三角形相似。(簡敘為:三邊對應成比例,兩個三角形相似。)(SSS)
4.兩三角形三邊對應平行,則兩三角形相似。(簡敘為:三邊對應平行,兩個三角形相似。)
5.如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似。(簡敘為:斜邊與直角邊對應成比例,兩個直角三角形相似。)(HL)
6.如果兩個三角形全等,那麼這兩個三角形相似(相似比為1:1)(簡敘為:全等三角形相似)。
相似三角形的判定公式
相似三角形的性質
1.相似三角形對應角相等,對應邊成比例。
2.相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等於相似比。
3.相似三角形周長的比等於相似比。
4.相似三角形面積的比等於相似比的平方。
5.相似三角形內,外切圓直徑比和周長比都和相似比相同,內,外切圓面積比是相似比的平方。