×

e的x+y次方的導數怎麼求

e的x+y次方的導數怎麼求

曉智 曉智 發表於2024-09-09 15:04:54 瀏覽49 回應0

搶沙發發表回應

轉化為初等函數求偏x導,兩邊同時取對數有:ln(y)=xy得y'/y=y+xy'解之即可得y'=y方/(1-xy)。不是所有的函數都有導數,一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。

對於可導的函數f(x),x↦f'(x)也是一個函數,稱作f(x)的導函數(簡稱導數)。尋找已知的函數在某點的導數或其導函數的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運算法則也來源於極限的四則運算法則。反之,已知導函數也可以反過來求原來的函數,即不定積分。

如果函數y=f(x)在開區間內每一點都可導,就稱函數f(x)在區間內可導。這時函數y=f(x)對於區間內的每一個確定的x值,都對應著一個確定的導數值,這就構成一個新的函數,稱這個函數為原來函數y=f(x)的導函數,記作y'、f'(x)、dy/dx或df(x)/dx,簡稱導數。

函數y=f(x)在x0點的導數f'(x0)的幾何意義:表示函數曲線在點P0(x0,f(x0))處的切線的斜率(導數的幾何意義是該函數曲線在這一點上的切線斜率)。

群賢畢至

訪客