伴隨矩陣和轉置的含義、性質和求法不同。在線性代數中,一個方形矩陣的伴隨矩陣是一個類似於逆矩陣的概念。如果二維矩陣可逆,那麼它的逆矩陣和它的伴隨矩陣之間隻差一個系數,對多維矩陣也存在這個規律。然而,伴隨矩陣對不可逆的矩陣也有定義,並且不需要用到除法。將矩陣的行列互換得到的新矩陣稱為轉置矩陣,轉置矩陣的行列式不變。
性質不同:
轉置矩陣的行列式不變、轉置矩陣後的加減與加減後矩陣再轉置不變結果。即(A逆)轉置=(A轉置)逆。A逆=A*/|A|。
矩陣求法不同:
當矩陣是大於等於二階時,主對角元素是將原矩陣該元素所在行列去掉再求行列式,非主對角元素是原矩陣該元素的共軛位置的元素去掉所在行列求行列式乘以。
為該元素的共軛位置的元素的行和列的序號,序號從1開始。主對角元素實際上是非主對角元素的特殊情況。
當矩陣的階數等於一階時,伴隨矩陣為一階單位方陣;二階矩陣的求法口訣:主對角線元素互換,副對角線元素變號。