2arctanx*1/(1+x²)。導數也叫導函數值。又名微商,是微積分中的重要基礎概念。當函數y=f(x)的自變量x在一點x0上產生一個增量Δx時,函數輸出值的增量Δy與自變量增量Δx的比值在Δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。
不是所有的函數都有導數,一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。
對於可導的函數f(x),x↦f'(x)也是一個函數,稱作f(x)的導函數(簡稱導數)。尋找已知的函數在某點的導數或其導函數的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運算法則也來源於極限的四則運算法則。反之,已知導函數也可以反過來求原來的函數,即不定積分。
常用導數公式:
y=c(c為常數) y'=0
y=x^n y'=nx^(n-1)
y=a^x y'=a^xlna,y=e^x y'=e^x
y=logax y'=logae/x,y=lnx y'=1/x
y=sinx y'=cosx
y=cosx y'=-sinx
y=tanx y'=1/cos^2x
y=cotx y'=-1/sin^2x
y=arcsinx y'=1/√1-x^2