×

2022年高中數學函數知識點總結

2022年高中數學函數知識點總結

曉智 曉智 發表於2024-09-09 15:05:17 瀏覽28 回應0

搶沙發發表回應

數學當中,函數是非常重要的,那麼高中數學函數的知識點有哪些,小編整理瞭相關信息,希望會對大傢有所幫助!

2019高中數學函數知識點總結

2022年高中數學函數知識點有哪些

一、函數的定義域的常用求法:

1、分式的分母不等於零;

2、偶次方根的被開方數大於等於零;

3、對數的真數大於零;

4、指數函數和對數函數的底數大於零且不等於1;

5、三角函數正切函數y=tanx中x≠kπ+π/2;

6、如果函數是由實際意義確定的解析式,應依據自變量的實際意義確定其取值范圍。

二、函數的解析式的常用求法:

1、定義法;

2、換元法;

3、待定系數法;

4、函數方程法;

5、參數法;

6、配方法

三、函數的值域的常用求法:

1、換元法;

2、配方法;

3、判別式法;

4、幾何法;

5、不等式法;

6、單調性法;

7、直接法

四、函數的最值的常用求法:

1、配方法;

2、換元法;

3、不等式法;

4、幾何法;

5、單調性法

五、函數單調性的常用結論:

1、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個區間上也為增(減)函數。

2、若f(x)為增(減)函數,則-f(x)為減(增)函數。

3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。

4、奇函數在對稱區間上的單調性相同,偶函數在對稱區間上的單調性相反。

5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。

六、函數奇偶性的常用結論:

1、如果一個奇函數在x=0處有定義,則f(0)=0,如果一個函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)。

2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。

3、一個奇函數與一個偶函數的積(商)為奇函數。

4、兩個函數y=f(u)和u=g(x)復合而成的函數,隻要其中有一個是偶函數,那麼該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。

學好高中數學函數的方法

1、課前預習教材。高中生想要學好數學,可以養成課前預習的好習慣。就是提前把老師第二天要講的內容預習一下,看看自己哪裡能看懂,哪裡不懂。這樣才能在老師講課的時候,帶著問題有針對性的去聽。

2、上課專心聽講。很多高中生數學不好的原因,往往是因為沒有認真聽課。很多同學都認為老師講的已經懂瞭,就不認真聽瞭,但是在自己做題的時候,卻往往做不對題。上課專心聽講往往是比課下自己學習要效果更好。

3、準備筆記本。高中生要準備一個筆記本,筆記本並不是讓你記公式和概念的,這些的東西書上都是有的,筆記本主要是要記老師給的例題。畢竟老師是很有經驗的,他們給的例題都是有一定的代表性的,把例題研究透對於數學成績的提高是有很大的助益的。

如何學好高中數學函數章節

首先,在學習高中函數的時候,學生要掌握好各個函數的性質特點。函數的定義明確,還是比較容易理解的。學生們可以通過函數的性質去瞭解並掌握函數。很多高一學生開始學習函數的時候,可能有很多內容不懂,但是不要緊張,也不要自暴自棄。

要堅持聽好每一節課,知識總是聚少成多,無論什麼知識都是見微知著的,需要不停積累才能看出事物的本質。

其次,在學習函數的時候,不要死記硬背。函數的基礎題型比較多,老師上課的時候往往會重點講解。學生要掌握並理解好重點題型,如果隻是熟悉題型,並不理解的話,很難將函數知識融會貫通。函數的學習重點不在記憶,而在於理解。

群賢畢至

訪客