×

e的x次方求導方法

e的x次方求導方法,怎麼求導

曉智 曉智 發表於2024-09-09 15:05:21 瀏覽41 回應0

搶沙發發表回應

求導是數學計算中的一個計算方法,它的定義就是,當自變量的增量趨於零時,因變量的增量與自變量的增量之商的極限。在一個函數存在導數時,稱這個函數可導或者可微分。可導的函數一定連續。不連續的函數一定不可導。求導是微積分的基礎,同時也是微積分計算的一個重要的支柱。

e的x次方求導

先求函數f(x)=a^x(a>0,a≠1)的導數

f'(x)=lim[f(x+h)-f(x)]/h(h→0)

=lim[a^(x+h)-a^x]/h(h→0)

=a^x lim(a^h-1)/h(h→0)

對lim(a^h-1)/h(h→0)求極限,得lna

∴f'(x)=a^xlna

即(a^x)'=a^xlna

當a=e時,∵ln e=1

∴(e^x)'=e^x

導數與函數的性質

可導函數的凹凸性與其導數的單調性有關。如果函數的導函數在某個區間上單調遞增,那麼這個區間上函數是向下凹的,反之則是向上凸的。

如果二階導函數存在,也可以用它的正負性判斷,如果在某個區間上恒大於零,則這個區間上函數是向下凹的,反之這個區間上函數是向上凸的。曲線的凹凸分界點稱為曲線的拐點。

群賢畢至

訪客