如果一個數列從第二項起,每一項與它的前一項的比都等於一個常數(不為0),那麼,這個數列就叫做等比數列。這個常數叫做等比數列的公比。如數列:2、4、8、16、······每一項與前一項的比值:4÷2=8÷4=16÷8=2,所以這個數列是等比數列,而它的公比就是2。
等比數列求和公式
q≠1時 Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)
q=1時Sn=na1
(a1為首項,an為第n項,d為公差,q 為等比)
這個常數叫做等比數列的公比,公比通常用字母q表示(q≠0),等比數列a1≠ 0。註:q=1 時,{an}為常數列。利用等比數列求和公式可以快速的計算出該數列的和。
等比數列的性質
(1)若m、n、p、q∈N+,且m+n=p+q,則am×an=ap×aq。
(2)在等比數列中,依次每k項之和仍成等比數列。
(3)若“G是a、b的等比中項”則“G2=ab(G≠0)”。
(4)若{an}是等比數列,公比為q1,{bn}也是等比數列,公比是q2,則{a2n},{a3n}…是等比數列,公比為q1^2,q1^3…{can},c是常數,{an×bn},{an/bn}是等比數列,公比為q1,q1q2,q1/q2。
(5)若(an)為等比數列且各項為正,公比為q,則(log以a為底an的對數)成等差,公差為log以a為底q的對數。
(6)等比數列前n項之和
在等比數列中,首項A1與公比q都不為零。
註意:上述公式中An表示A的n次方。
(7)由於首項為a1,公比為q的等比數列的通項公式可以寫成an=(a1/q)×qn,它的指數函數y=ax有著密切的聯系,從而可以利用指數函數的性質來研究等比數列