函數最值分為函數最小值與函數最大值。簡單來說,最小值即定義域中函數值的最小值,最大值即定義域中函數值的最大值。下面是求最大值和最小值的方法。
求函數的最大值和最小值
f(x)為關於x的函數,確定定義域後,應該可以求f(x)的值域,值域區間內,就是函數的最大值和最小值。
一般而言,可以把函數化簡,化簡成為:
f(x)=k(ax+b)²+c 的形式,在x的定義域內取值。
當k>0時,k(ax+b)²≥0,f(x)有極小值c。
當k<0時,k(ax+b)²≤0,f(x)有最大值c。
常見的求函數最值方法有
1、配方法: 形如的函數,根據二次函數的極值點或邊界點的取值確定函數的最值。
2、判別式法: 形如的分式函數, 將其化成系數含有y的關於x的二次方程.由於, 0, 求出y的最值, 此種方法易產生增根, 因而要對取得最值時對應的x值是否有解檢驗。
3、利用函數的單調性 首先明確函數的定義域和單調性, 再求最值。
4、利用均值不等式, 形如的函數, 及, 註意正,定,等的應用條件, 即: a, b均為正數, 是定值, a=b的等號是否成立。
5、換元法: 形如的函數, 令,反解出x, 代入上式, 得出關於t的函數, 註意t的定義域范圍, 再求關於t的函數的最值。