×

高一數學必修一知識點總結

高一數學必修一知識點總結,如何學好數學

曉智 曉智 發表於2024-09-09 15:06:12 瀏覽26 回應0

搶沙發發表回應

有很多的同學是非常的想知道,高一數學必修一知識點有哪些,如何學好高一數學呢,小編整理瞭相關信息,希望會對大傢有所幫助!

高一數學必修一知識點總結 如何學好數學

高一數學必修一知識點有哪些

【第一章:集合與函數概念】

一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

註意:常用數集及其記法:XKb1.Com

非負整數集(即自然數集)記作:N

正整數集:N*或N+

整數集:Z

有理數集:Q

實數集:R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合{xÎR|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關系

1.“包含”關系—子集

註意:有兩種可能

(1)A是B的一部分,;

(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關系:A=B(5≥5,且5≤5,則5=5)實

例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

即:

①任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那麼AíC

④如果AíB同時BíA那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集個數:

有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

三、集合的運算

運算類型交集並集補集

定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作‘A並B’),即AB={x|xA,或xB}).

【第二章:基本初等函數】

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果,那麼叫做的次方根(nthroot),其中>1,且∈*.

當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這裡叫做根指數(radicalexponent),叫做被開方數(radicand).

當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合並成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

註意:當是奇數時,當是偶數時,

2.分數指數冪

正數的分數指數冪的意義,規定:

0的正分數指數冪等於0,0的負分數指數冪沒有意義

指出:規定瞭分數指數冪的意義後,指數的概念就從整數指數推廣到瞭有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

3.實數指數冪的運算性質

(二)指數函數及其性質

1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.

註意:指數函數的底數的取值范圍,底數不能是負數、零和1.

2、指數函數的圖象和性質

【第三章:第三章函數的應用】

1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。

2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:

方程有實數根函數的圖象與軸有交點函數有零點.

3、函數零點的求法:

求函數的零點:

(1)(代數法)求方程的實數根;

(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.

4、二次函數的零點:

二次函數.

1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.

3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.

怎麼才能學好高中數學

先看筆記後做作業。 有的高中學生感到。老師講過的,自己已經聽得明明白白瞭。但是,為什麼自己一做題就困難重重瞭呢?其原因在於,學生對教師所講的內容的理解,還沒能達到教師所要求的層次。

因此,每天在做作業之前,一定要把課本的有關內容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的最大區別。尤其練習題不太配套時,作業中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不註意對此落實,天長日久,就會造成極大損失。

做題之後加強反思。 學生一定要明確,現在正坐著的題,一定不是考試的題目。而是要運用現在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思。總結一下自己的收獲。要總結出,這是一道什麼內容的題,用的是什麼方法。做到知識成片,問題成串,日久天長,構建起一個內容與方法的科學的網絡系統。

主動復習總結提高。 進行章節總結是非常重要的。初中時是教師替學生做總結,做得細致,深刻,完整。高中是自己給自己做總結,老師不但不給做,而且是講到哪,考到哪,不留復習時間,也沒有明確指出做總結的時間。

學好數學的技巧

1.學數學要善於思考,自己想出來的答案遠比別人講出來的答案印象深刻。

2.課前要做好預習,這樣上數學課時才能把不會的知識點更好的消化吸收掉。

3.數學公式一定要記熟,並且還要會推導,能舉一反三。

4.學好數學最基礎的就是把課本知識點及課後習題都掌握好。

5.數學80%的分數來源於基礎知識,20%的分數屬於難點,所以考120分並不難。

6.數學需要沉下心去做,浮躁的人很難學好數學,踏踏實實做題才是硬道理。

7.數學要想學好,不琢磨是行不通的,遇到難題不能躲,研究明白瞭才能罷休。

8.數學最主要的就是解題過程,懂得數學思維很關鍵,思路通瞭,數學自然就會瞭。

9.數學不是用來看的,而是用來算的,或許這一秒沒思路,當你拿起筆開始計算的那一秒,就豁然開朗瞭。

10.數學題目不會做,原因之一就是例題沒研究明白,所以數學書上的例題絕對不要放過。

群賢畢至

訪客