×

高一數學必修一知識點梳理

高一數學必修一知識點梳理,學習經驗總結

曉智 曉智 發表於2024-09-10 09:57:00 瀏覽33 回應0

搶沙發發表回應

高一數學必修一的學習,是大傢進行高中數學學習的基礎,所以同學們必須學好這部分知識,打好數學學習的堅實基礎。為幫助大傢更好學習這部分知識點,下面是高三網小編為大傢中介的高一數學必修一知識點總結,供大傢參考。

高一數學必修一知識點有哪些

【第一章:集合與函數概念】

一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

註意:常用數集及其記法:XKb1.Com

非負整數集(即自然數集)記作:N

正整數集:N*或N+

整數集:Z

有理數集:Q

實數集:R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合{xÎR|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關系

1.“包含”關系—子集

註意:有兩種可能

(1)A是B的一部分,;

(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關系:A=B(5≥5,且5≤5,則5=5)實

例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

即:

①任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那麼AíC

④如果AíB同時BíA那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集個數:

有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

三、集合的運算

運算類型交集並集補集

定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作‘A並B’),即AB={x|xA,或xB}).

【第二章:基本初等函數】

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果,那麼叫做的次方根(nthroot),其中>1,且∈*.

當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這裡叫做根指數(radicalexponent),叫做被開方數(radicand).

當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合並成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

註意:當是奇數時,當是偶數時,

2.分數指數冪

正數的分數指數冪的意義,規定:

0的正分數指數冪等於0,0的負分數指數冪沒有意義

指出:規定瞭分數指數冪的意義後,指數的概念就從整數指數推廣到瞭有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

3.實數指數冪的運算性質

(二)指數函數及其性質

1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.

註意:指數函數的底數的取值范圍,底數不能是負數、零和1.

2、指數函數的圖象和性質

【第三章:第三章函數的應用】

1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。

2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:

方程有實數根函數的圖象與軸有交點函數有零點.

3、函數零點的求法:

求函數的零點:

(1)(代數法)求方程的實數根;

(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.

4、二次函數的零點:

二次函數.

1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.

3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.

高中數學必修一經驗總結

數學必修一還隻是高中課程的開始,所以不會太難,但是基礎要打好。

比如第一章:集合與函數概念。這一部分概念的記憶比較重要,而考試的時候很容易因為概念模糊而失分,所以上課的時候一定要認真聽講。老師講課講得快也不代表講得不好,反而可以提高學生的思維速度。

第二章:基本初等函數。第三章:函數的應用。

函數是高中階段非常關鍵的一個知識點,什麼單調性、最值、周期性、對稱性都會在後面的學習中有廣泛的應用。建議函數這一章多做一點練習,一邊練習一邊歸納。想要知道一道題該用什麼方法做這是問不出來的,題目做多瞭自然而然就成瞭自己的經驗,看到題目就會非常自然的做出來啦。

不做數學題就想學好數學是不可能的,而學數學也不能急功近利。一邊練習的同時一邊歸納做題的方法,數學成績自然而然就會好起來啦~ 還有,自信也是非常重要的~

群賢畢至

訪客