高一數學必修一的學習,是大傢進行高中數學學習的基礎,所以同學們必須學好這部分知識,打好數學學習的堅實基礎。為幫助大傢更好學習這部分知識點,下面是高三網小編為大傢中介的高一數學必修一知識點總結,供大傢參考。
高一數學必修一知識點有哪些
【第一章:集合與函數概念】
一、集合有關概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
註意:常用數集及其記法:XKb1.Com
非負整數集(即自然數集)記作:N
正整數集:N*或N+
整數集:Z
有理數集:Q
實數集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合{xÎR|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關系
1.“包含”關系—子集
註意:有兩種可能
(1)A是B的一部分,;
(2)A與B是同一集合。
反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關系:A=B(5≥5,且5≤5,則5=5)實
例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:
①任何一個集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那麼AíC
④如果AíB同時BíA那麼A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個數:
有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集
三、集合的運算
運算類型交集並集補集
定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作‘A並B’),即AB={x|xA,或xB}).
【第二章:基本初等函數】
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那麼叫做的次方根(nthroot),其中>1,且∈*.
當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這裡叫做根指數(radicalexponent),叫做被開方數(radicand).
當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合並成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。
註意:當是奇數時,當是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等於0,0的負分數指數冪沒有意義
指出:規定瞭分數指數冪的意義後,指數的概念就從整數指數推廣到瞭有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
3.實數指數冪的運算性質
(二)指數函數及其性質
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.
註意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質
【第三章:第三章函數的應用】
1、函數零點的概念:對於函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:
方程有實數根函數的圖象與軸有交點函數有零點.
3、函數零點的求法:
求函數的零點:
(1)(代數法)求方程的實數根;
(2)(幾何法)對於不能用求根公式的方程,可以將它與函數的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數.
1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.
3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.
高中數學必修一經驗總結
數學必修一還隻是高中課程的開始,所以不會太難,但是基礎要打好。
比如第一章:集合與函數概念。這一部分概念的記憶比較重要,而考試的時候很容易因為概念模糊而失分,所以上課的時候一定要認真聽講。老師講課講得快也不代表講得不好,反而可以提高學生的思維速度。
第二章:基本初等函數。第三章:函數的應用。
函數是高中階段非常關鍵的一個知識點,什麼單調性、最值、周期性、對稱性都會在後面的學習中有廣泛的應用。建議函數這一章多做一點練習,一邊練習一邊歸納。想要知道一道題該用什麼方法做這是問不出來的,題目做多瞭自然而然就成瞭自己的經驗,看到題目就會非常自然的做出來啦。
不做數學題就想學好數學是不可能的,而學數學也不能急功近利。一邊練習的同時一邊歸納做題的方法,數學成績自然而然就會好起來啦~ 還有,自信也是非常重要的~