tan120度等於-√3。在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的對邊c,BC是∠A的對邊a,AC是∠B的對邊b,正切函數就是tanB=b/a,即tanB=AC/BC。三角函數是數學中屬於初等函數中的超越函數的一類函數。詳細內容接著往下看吧。
tan120度是多少
tan120度等於-√3。在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的對邊c,BC是∠A的對邊a,AC是∠B的對邊b,正切函數就是tanB=b/a,即tanB=AC/BC。
三角函數是數學中屬於初等函數中的超越函數的一類函數。它們的本質是任意角的集合與一個比值的集合的變量之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。
由於三角函數的周期性,它並不具有單值函數意義上的反函數。
三角函數在復數中有較為重要的應用。在物理學中,三角函數也是常用的工具。
在Rt△ABC中,如果銳角A確定,那麼角A的對邊與鄰邊的比值隨之確定,這個比叫做角A的正切,記作tanA。
即:tanA=∠A的對邊/∠A的鄰邊。
三角函數tan公式
(1)tan及其他三角函數的半角公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
(2)tan及其他三角函數的倍角公式
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
(3)tan及其他三角函數的三倍角公式
sin3α=4sinα*sin(π/3+α)sin(π/3-α)
cos3α=4cosα*cos(π/3+α)cos(π/3-α)
tan3α=tanα*tan(π/3+α)*tan(π/3-α)